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Bifurcation analysis for shear localization in non-polar
and micro-polar hypoplastic continua
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Abstract. In this paper, shear localization in granular materials is studied as a bifurcation problem based on a
conventional (non-polar) and a micro-polar continuum description. General bifurcation conditions are formulated
for a non-polar hypoplastic model and its micro-polar continuum extension. These conditions define stress, couple
stress and density states at which weak discontinuity bifurcation may occur. The stress states for bifurcation are
then compared with the peak stress states, which define a bounding surface for the accessible stress domain in
the principal stress space. The results show that, in a micro-polar continuum description, the constitutive model
may no longer be associated with weak discontinuity bifurcation.
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1. Introduction

Localized deformation, in the form of narrow shear zones known as shear bands, is a widely
observed phenomenon in granular materials when a certain limit state is approached. Analysis
of shear localization can give some insight into the failure mechanism of granular materials
and may provide further understanding for constitutive modelling of inelastic behavior.

Following the pioneering work of Rice [1] and Rudnicki and Rice [2], the phenomenon
of shear localization has often been directly associated with the weak discontinuity bifurca-
tion properties of constitutive models. The onset of shear localization was understood “in the
sense that the constitutive relations may allow the homogeneous deformation of an initially
uniform material to lead to a bifurcation point, at which non-uniform deformation can be
incipient in a planar band under conditions of continuing equilibrium and continuing defor-
mation outside the zone of localization” [2]. The technique of bifurcation analysis has been
widely used to predict the occurrence of shear localization [3,4].

It is well known that constitutive models developed within the framework of conventional
continuum theory are limited to modelling pre-bifurcation behavior. Due to the lack of an
internal length, these models cannot capture the thickness of the localized zones. As a result,
numerical modelling of post-bifurcation behavior suffers from severe mesh-dependency.

Consideration of the relevant micro-mechanics leads to the application of enhanced con-
tinuum theory, including non-local theory, higher-gradient theory and micro-polar continuum
theory, in the macro-description of granular materials. These theories introduce a character-
istic length, which regularizes the failure process with non-local effects. In particular, recent
work has established links between inter-granular contacts and the continuum quantities such
as stress and couple stress [5,6]. Thus micro-polar continuum theory has become a suitable
framework for macro-description of granular media. The theory has been used to study shear
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localization in granular materials by Miihlhaus [7], de Borst [8], Dietsche et al. [9] and Ehlers
and Volk [10] who adopted an elastoplastic approach, and by Tejchman [11], Tejchman and
Bauer [12], Bauer and Huang [13], Tejchman and Gudehus [14] and Huang and Bauer [15]
who adopted a hypoplastic approach. It is widely accepted that post-bifurcation behavior can
be well captured by micro-polar continuum models. Numerical results for shearing of a gran-
ular layer between two parallel plates show that a localized shear zone of finite thickness can
be obtained, which is mesh-independent provided that the element size is small enough [14,
15].

An open question with the micro-polar continuum description of granular materials is
whether shear localization will occur in a homogeneous deforming specimen in the form of
weak discontinuity bifurcation (as is the case in a conventional continuum description). This
paper focuses on bifurcation analysis of constitutive models developed for cohesionless granu-
lar materials using a conventional (non-polar) continuum approach and a micro-polar contin-
uum approach. The non-polar hypoplastic model proposed by Gudehus [16] and Bauer [17],
and its micro-polar continuum extension formulated by Huang et al. [18], are employed for
this purpose. In these non-polar and micro-polar models, the void ratio is incorporated as
a measurement of density. This allows the stationary state (the so-called critical state) to be
described and the pressure- and density-dependent behavior to be captured for a wide range
of stress and density levels with a single set of constitutive constants.

Hypoplastic constitutive models belong to a category known as incrementally nonlinear
models. Bifurcation analysis of non-polar models of this type was first discussed by Kolym-
bas [19] and Chambon and Desrues [20]. A more general analysis can be found in [21,22].
Bauer and Huang [23] and Bauer [24] discussed the pressure and density effects in bifurca-
tion and shear localization. Wu and Sikora [25] and Wu [26] presented a bifurcation surface
in principal-stress space for a density-independent hypoplastic model. Fewer results are known
for bifurcation analysis of micro-polar continuum models. Some early results can be found in,
for instance, [9,27].

In this paper, a general criterion for bifurcation is first derived for the non-polar
hypoplastic continuum. By extending the concept of a weak discontinuity in the micro-polar
continuum, a similar bifurcation criterion is formulated for the micro-polar hypoplastic con-
tinuum. In order to assess the possibility of shear bifurcation in a general way, a condition
for the peak stress state is provided. Geometric representations of the bifurcation states and
peak stress states in the deviatoric stress plane are then presented, from which the accessibility
of bifurcation points can be determined.

Symbolic notation is used for vectors and tensors in this paper. Vectors and second-order
tensors are distinguished by bold-faced font and fourth-order tensors by calligraphic font.
Index notation is used by referring to a fixed orthogonal Cartesian coordinate system. The
second-order unit tensor and the fourth-order unit tensor are denoted by I and Z, respec-
tively. Their components read (I);; =46;; and (Z);jx = 8;x8;; with §;; being the Kronecker
delta. The permutation symbol € is used with (e€);;x =1 for ijk e {{1,2,3},{2,3,1},{3, 1,2}},
(e)ijk = —1 for ijk e {{1,3,2},{2,1,3},{3,2,1}} and (e);jx =0 otherwise. The dot-product
operation is used for a-b=ua;b;, (A-b); =A;jb;, A:B=A;;B;; and (A:B);; = A;jiBu.
Here, the usual summation convention for dummy indices is adopted. Dyadic multiplica-
tion is denoted by the symbol ®. For instance (a ® b);; =a;b; and (A @ B);ji = A;jBy.
The Euclidean norm is used for all vectors so that ||a|| =+/a-a and all tensors so that
Al = ~/A:A. The Nabla operator V is so defined that (Va);; = da;/dx; and (V -a) =
aai/ax,-.
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2. Hypoplastic description of granular materials

2.1. OUTLINE OF THE MICRO-POLAR CONTINUUM

A micro-polar continuum is characterized by additional rotational degrees of freedom and
the presence of a couple stress which is work-conjugated with the micro-curvature (associated
with the rotational degrees of freedom). Material particles in a micro-polar continuum can
translate and rotate independently. Here we use the vectors u and w° to denote the rate of
translation (velocity) and the rate of rotation (angular velocity) of material particles. Then the
deformation rate of a micro-polar (Cosserat) continuum can be measured by the strain rate
€¢ and the micro-curvature rate k¥, which are defined by the following kinematic relations:

€°=Vi+e-W, & =0u;/0x; +ejrup, (1a)
k= VW, Kij = WS /dx;. (I1b)

By introducing the notion of micro-spin @°= —e-w°, Equation (la) can also be written in the
form of:

£=e+o—0f,

where & =d = 1[Vi+ (V)"] and @ = §[Va— (Vi)”], the symmetric part and the skew sym-
metric part of the velocity gradient, are the strain rate and the spin (termed the macro spin
in this paper) for the non-polar continuum. The strain rate for the micro-polar continuum &°¢
is generally non-symmetric. In the case where the micro-spin coincides with the macro-spin,
it becomes symmetric and coincides with the strain rate for the non-polar continuum.

The equilibrium equations for a micro-polar continuum must take into account the pres-
ence of the couple stress . In cases where body forces and body couples are absent, the local
form of the equilibrium equations read:

V.ol =0, 301 /9x; =0, (2a)
V. [LT —€.0 20, al,L,'j/a)Cj _Eijkajk =0. (Zb)

From the second equation, we see that the stress tensor is generally non-symmetric for a
micro-polar continuum. When the couple stress vanishes, the stress tensor becomes symmetric.

2.2. HYPOPLASTIC MODEL FOR NON-POLAR AND MICRO-POLAR CONTINUUM

In hypoplasticity, the granular material is described as a continuum in terms of material state
and material properties. The latter are represented by constitutive constants which do not
change during loading. In a non-polar (conventional) continuum approach, the material state
is characterized by the current stress ¢ and the void ratio e, while in a micro-polar continuum
description the couple stress u is also included.

In the nonpolar continuum description, a practical hypoplastic constitutive equation for
the cohesionless granular materials has the following general form [16]:

6 =fs(L(d):+ faN(@)l€lD). 3)

The objective time rate of the Cauchy stress, ¢, is a nonlinear function of the strain rate é.
Herein the fourth-order tensor £ and the second-order tensor N are functions of the normal-
ized stress 6 =0 /tr o, and the scalar factors fs and fy (known as the stiffness factor and
the density factor, respectively) are functions of the mean pressure p=—tr ¢ /3 and the void
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ratio e. The elaborated nonlinear tensor-valued function allows the description of different
stiffness for loading and unloading without employing the elastoplastic concept of decompo-
sition of strain rate into an elastic part and a plastic part. As ¢ is a positively homogeneous
of order one in &, the rate-independent behavior is described by (3).

In a micropolar continuum extension [18] of constitutive equation (3), the objective time
rate of the stress, ¢, and the objective time rate of couple stress, i , are expressed as

6= f[L77 16+ L7M  k* + f4NOR], (4a)
fL=dso fi[LH i+ LH9 1 €+ f4NHR], (4b)

where dsy denotes the mean grain diameter, which is a natural length scale for granular mate-
rials, £* =dsok is the scaled micro-curvature rate, and R is a combination of the norms of the
strain rate and the micro-curvature rate in the form of

R=+vé:e+8%k kK, (5
where

8= (a,/a)dso ©)

is a characteristic length which scales the thickness of shear bands. The fourth-order tensors
and the second-order tensors depend on the normalized stress tensor, 6, and the normalized

A

couple-stress tensor, it =p/(dsotr o), with the following representations:

L£0° =a2T+6®6, LOM=6Q@f, N°=a(6+6¢%), -
LM =T+ @, L'=p®6, NF=2aj.

Herein 69 =& —1I/3 denotes the deviator of the normalized stress, and & and a, are two
parameters related to the limit value of stress and couple stress at stationary states.

A stationary state is reached when there is no change in the state variables under contin-
uing deformation. The present micro-polar hypoplastic model is characterized by the follow-
ing limit condition on the stress, the couple stress, and the void ratio at stationary states [18]:

~dy2 pan2
@ @:1 and fg=1. )
a a

m

This relation shows a coupling between the limit stress and the limit couple stress. It also pro-
vides a physical interpretation for the parameters a and a,.
The evolution of the void ratio is governed by the equation:

e=(+etr e, ©)]

which is a result of mass balance by neglecting the volume change in solid grains. The void
ratio of a granular material is bounded by the maximum void ratio e¢; for the loosest states
and the minimum void ratio e; for the densest state, and it tends to a critical void ratio e, at
stationary states. ¢;, ¢4 and e, are pressure-dependent quantities. In the present model, the
variation of e¢;, ¢4 and e, with the mean pressure p is described by the following relation
(refer to Figure 1):

L= exp(GBp/ ). (10)

€co €do €io
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log(p)
Figure 1. Pressure dependence of the maximum, Figure 2. Sketch of weak discontinuity plane in the
the critic and the minimum void ratio [17]. principal stress space.

Herein hg; and n are two material constants that determine the shape of the void ratio-
pressure curves, and e;,, ¢4, and e., are three material constants which represent the maxi-
mum, minimum and critical void ratio at the stress-free state. The density factor fy is related
to the pressure-dependent relative density according to

o
=(1) (1n
€c—é€q
where « is a material constant which scales the peak stress state under loading. Note that
dilative deformation corresponds to an increase in the value for fy. The densest state is char-
acterized by fq=0, while fy=1 corresponds to e =e¢.. Therefore, the critical void ratio is
reached at a stationary state, which is in accordance with experimental observations for gran-

ular materials.
The stiffness factor f; has the following representation:

4 . (1=n)
fs_L (e_l)ﬂ L +ei <£> [3&l-2+1+«/§&ifdi]_1. (12)

T n(6:6) \e e; hg

Herein f;; and a; represent the values of f4 and a at isotropic states. From (10) and (11),
fai has a constant value fy; ={(eio —e€u0)/(eco — €do)}*. As described later, a; has a constant
value, which is related to the critical friction angle ¢.. The term (e;/e)? reflects the influence
of the density on the stiffness factor with S~ 1 being another material constant.

For the special case where the couple stress and micro-curvature rate vanish and the
micro-spin coincides with the macro-spin, the non-polar continuum model proposed by Gude-
hus [16] and Bauer [17] is recovered with

LO°=L=dT+6®6, N’ =N=a6+6¢%. (13)
Correspondingly, the limit stress at a stationary state satisfies the following condition:
16411 =a. (14)

which represents a conical surface in the principal stress space with its apex at the origin.
Bauer [28] showed that it is possible to embed different limit stress conditions into this model
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by adopting different expressions for the parameter a. For instance, a constant value for a
corresponds to a Drucker—Prage type limit condition. With the following formulation, the
Matsuoka—Nakai limit condition is embedded:

. sing. 8/3 3116112 +/3/2116*||® cos(30) 1644 (15)
a= . — o )
3 —sing, 1+./3/2116" | cos(36)

where ¢°¢ denotes the deviator of the normalized symmetric stress, and 6 denotes the Lode
angle defined in the deviatoric stress plane for the symmetric stress.

The limit couple stress related parameter a, is considered to be constant. For a granular
material without preferred grain orientation, this is a reasonable assumption. All the material
constants in this model, except a,, can be determined easily from elementary laboratory tests
as discussed in detail by Herle and Gudehus [29]. a,, may be determined from a back analy-
sis procedure after measuring the shear band thickness, which requires advanced techniques.
For the following discussion we note that the stiffness factor f; has a value of the order of
hy p!=". The granular hardness (as termed in Gudehus [16]) A, which has a dimension of
stress, has a typical value of the order of 1.0 x 10° kPa or higher for sands. The dimensionless
exponent n falls in the range of (0-25,0-5) [29].

3. Bifurcation analysis for the non-polar hypoplastic continuum

Consider a homogeneous specimen under uniform deformation and assume that the velocity
and stress fields are continuous up to a certain state where a discontinuity in the velocity gra-
dient across a planar surface becomes possible. This weak discontinuity plane S is then char-
acterized by the following kinematic conditions:

[M=[[Vi]]= (Vi)' — (Vi)’=g@n and [[a]]=0"'—i’=0. (16)

Here the superscript 0 and 1 are used to denote the values for a quantity on either side of
the discontinuity plane. Equation (16) states that across the discontinuous plane S the veloc-
ity gradient is experiencing a jump, which is characterized by a vector g and the unit normal
vector n to the discontinuity plane, while the velocity field itself is continuous. Correspond-
ing to the discontinuous velocity gradient, jumps in the strain rate and the spin tensor will
be encountered on crossing S:

lell=¢' &= @@n+nom), (172)
[6]=6'~'= 5o -nog). (17b)

In response to this, the stress rate becomes discontinuous. A bifurcation condition can be for-
mulated by considering rate-form equilibrium long the possible discontinuity plane. Concern-
ing the fact that the direction of the discontinuity plane varies with time due to the motion,
we start to consider the equilibrium in a reference configuration (A reference configuration is
a fixed configuration in the space which uniquely designates a one-to-one mapping with mate-
rial points in motion.). On the image discontinuity plane in the reference configuration, the
nominal traction rate must be unique, ie., [[P]]-N=0, where P is the first Piola—Kirchhoff
stress and N is the unit normal of the image discontinuity plane, which is independent of time.
Using the well-known relation P=Jo -F~7 and the Nanson’s formula (see, for instance, [30,
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p. 75]) the following equation is obtained:
[[¢ + (divine —a -17]]-n=[[¢]]-n+ ([[divi]le — o -[[17]]) -n=0. (18)

Note that the material response is described in terms of the objective time rates of stress and
couple stress. There is an infinite number of possibilities which define an objective time rate
for the stress tensor. The most widely used objective stress rates include the Zaremba-Jau-
mann rate, the Oldroyd rate, the Green—Naghdi rate and the Truesdell rate ([30, Section5.3]).
Choosing a proper objective stress rate is, in many cases, a problem of a proper formulation
of the constitutive equations. It should also be noted that the discrepancies due to the choice
of different objective stress rates become significant only when a large shear deformation has
taken place (e.g. [28]). At the beginning of shear localization, such discrepancies are negligi-
ble. In this study, we take the Zaremba—Jaumann rate as the objective time rate for both the
stress tensor and the couple stress tensor:

06=0—(w-0—0®), (19a)

p=p— (@ p—p o). (19b)
Substitution of (19a) in (18) yields the following bifurcation condition

[[6]]'n+ ([diva]le -n+[[@]]-0 -n—0 -[[d]]) -n=0. (20)

Invoking the constitutive relations leads to the following equations for the components of the
vector g:

K-g—Afqr=0. (21)

The following notations are introduced in this equation: the scalar factor A=||&'||—||&°||, the
vector r=—a(o —i—&d) -n and the tensor K=K’ +K”, where

K/Z%(I_Fn@n)-’—(&n)@(&n)’ (22)
K’ =-2[G.n@n—nen-¢'].

In the representation for K”, the factor —3p comes out from the stress normalization. Since
the stiffness factor f; ~ h’ pl=" it follows that the factor p/f; has a value of the order of
(p/hs)". Therefore, for most practical stress states with p <<h,, K’ is the dominant term in
K and K” can be neglected. Because K’ is positive-definite and therefore invertible, K is also
invertible. Then we can write g as a linear function of the scalar factor A:

g=rfaK~ 1. (23)

For A =0, we have only a null solution for g, which indicates no bifurcation at all. Thus the
bifurcation problem is equivalent to seeking a non-trivial solution for the scalar factor A. By
introducing the notations

. R PR .
g:Kﬁl-r and As:z(g®n+n®g), (24)

we can write the strain rate as &!

scalar factor A can be written as

=&+ 1fgA&. It follows that the nonlinear equation for the

A—(\/(é0+kfdAe):(é0+kfdAs)—\/é0:é0>=0. (25)
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Algebraic manipulation leads to the following equation:
(fing: A& —1))A>+2(fae": A& — (1€ =0.

The non-trivial solution for A then reads

0 0 A A
— A 1— A
)\.:2”€2” AfdeA € -2 2fd|}|\ €|}|\COSJ/ ||€0|| (26)
fiAe:Ae—1 TACRRACESS

with cosy :=(&%: A&)/(|&°||||A&]). Note that A is restricted by the condition
a= )&, 27)

since ||&]|=A+]&°]| > 0. It can be shown that the requirement (27) can be fulfilled only when

R
ffAe:Ae:Td[g-gHg-n)z]zl. (28)

Proof. Assume that (28) is not fulfilled, then f4||Aé&| <1. The maximum value for A in (26)
corresponds to cosy =1, which reads

1€°] < —11€°), (29)

)\max =

NEATY]

which violates the requirement (27).

Remark. Inequality (28) can also be obtained in an alternative way. Note that a triangular
inequality [|&! —&°)12 > (le'|| — 1€°|)? is generally valid. Substitution of (||&'| — ||€°|)? = A2
and &' —&%)? =A2fdz(§ -8+ (&-m)?)/2 leads to inequality (28). This approach is simpler.
However, the approach from (25) to (28) provides more detail about the factor A and can be
repeated for derivation of the bifurcation criterion for the micro-polar continuum model.
Remark. The equality in (28) corresponds to either ||&']|/]|€°|| =00 or cosy =1. The later is
true only when &' is co-axial with &°, which corresponds to pure dilation or contraction in
the localized zone. For a uniformly deforming process leading to a continuous onset of shear
bifurcation, the equality represents a limit state at which the bifurcation will not occur.

To assess whether the bifurcation condition is met in a loading program, the equality can be
used as a determinant. That is, incipience of shear localization is indicated by the following
condition:

f3®(6,n)—1=0, (30)
with
1 1
®o(§,n) = 5[@-@+<gv-n>2]= 5[<K—l - K 'n+mK!n2 31

Note that for p <<hg, K” can be neglected in the representation of K. In the case where p~
hs or p>hg, we have e; /e~ 1, which implies that f; and K” are almost independent of the
void ratio. Therefore, in the criterion (30), ®¢ can be considered independent of the density.
The influence of the density on bifurcation is reflected only by the factor fy, which is sepa-
rated from @.
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4. Bifurcation analysis for the micro-polar hypoplastic continuum

Similar conditions for weak-discontinuity bifurcation can be formulated for a micro-polar
hypoplastic continuum. We start again with a homogeneously deforming specimen in which
the velocity, rotation rate, stress and couple stress fields are continuous up to a state where
a banded planar weak discontinuity may develop. Across the weak discontinuity plane S, the
velocity and the rotation rate fields are initially continuous:

[a]=u' —a’=0 and [W]=w"'—-w"=0, (32)

while the jump in the velocity gradient and the rotation-rate gradient can be written as
[Vill= (V! — (Vi)’ =g“ ®n, (33a)
[[ic]]= (VW) — (VW)’ =g” ®n. (33b)

Weak discontinuity bifurcation is characterized by vectors g*, g* and the unit normal vector
n for the discontinuity plane S. With respect to the discontinuity in the velocity gradient, the
jumps in the strain rate and in the macro-spin read

[6]] =6 — &V =[[Viu+e-w]=g"®n, (34a)
[@]] =& —a)o:%(g”@on—n@g“). (34b)

Similar to the situation for the nonpolar continuum, consideration of the equilibrium in rate
form along the discontinuity plane leads to the following conditions to be fulfilled by the total
stress rate and the total couple stress rate:

[[61)-n+ ([divulle —o -[[1"])) -n=0, (35a)

[[A]]-n+ ([divalle — p - [171]) -n =0. (35b)
Using the expressions for stress rate (19a) and couple-stress rate (19b) and the constitutive
Equations (4a) and (4b), the following nonlinear equations are obtained for the vectors g*
and g":

Kuu . gu +Kuw . gw - )‘Cfdru :07 (363)

Kwu . gu +wa _gw - )‘Cfdrw =0. (36b)
Herein the following notations are used: the scalar factor A =[[R]], the vectors r*=—a(6 +

6% .n and v =—2ajt-n, and the tensors K., =K, +K/,, K., =K, K,,, =K/, + K/, , and

uu’ uw? wu
K., =K, with the following representations:

K, =a’1+@ m®@ m), K, =dso@ me{@mn),

Ky, = (R-m@ @G 0. K, =dsola}1+(@-n)® @ )

K}, =—3[¢ n@n—n®n-¢"], (37)
K;, = —Fli-n@n—nen-i’].

For a concise representation, we define IT according to

KMM KMU) }
I:= . 38
[K Kuu, (38)
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By neglecting K/, and K/, in K, and K,,, for p <<h,, we can show that II is invertible

(see appendix A). We can then write
u _ l.u
{gw}ﬁfdn ‘-{rw}- (39)

Again the bifurcation vectors g* and g are linearly related to the scalar factor A¢. Thus the
problem is equivalent to seeking a non-trivial solution for the scalar factor A¢. By introducing
the following notations

g" -

HIE AR 0
and

AE°=g"®n, Ak=g"®n, 41)

the equation for the factor A can be written as

A+ \/ 60: 60+ 5240 5240

- \/ (604 A€ FAET) : (6041 fuAES) + 82k + A fyAk) : (k0 + A€ fy AR). (42)

The non-trivial solution for A¢ reads

1= fa(eC: A& +6%k0: Ak) [,/ 1160112 + 821”12
Xy 1012 + 82 ]2, @3)

AC=2 - v
f7(IA& 2+ 82| Ak|1?) — 1

Here A€ is restricted by a requirement similar to (27), which reads

262 =\ 1€0012 + 821”12, (44)
In a similar way, we can show that this requirement can be fulfilled only when

FRUIAE + 8% AP = 1. (45)
Proof. Since &0: A&° < |&V)|||A&°| and £°: Ak <||k°|||| Ak, we have

(€0 A8 +8%" A < (1617 + 87 1RO IP) (1 AE1” + 87| Ae|).

If follows that the following inequality is valid.

Fa(€0: A8 +82k%: A [y 1160112 + 8211&° 112 < fa/I1 A& 2 + 82 ) Ak |2

Assume that (45) is not fulfilled, then f4v/]|A&°|12+82||Ak|? <1. The maximum value for A¢
in (43) can be obtained as

2
My =~ VIEO12 4 820012 < — 16012 4 5202
I V1A P 82 A2

which violates the requirement (44). Therefore, the occurrence of shear bifurcation in the
micro-polar hypoplastic continuum can be judged by the following criterion:

f3®1@6, jt,m)—1=0, (46)
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where

(G, ft,n) = (| A& + 8% Ak |?) =§" - §“ + 578" - 8Y. (47)

It has been widely recognized that polar effects are usually associated with pronounced strain

gradients. A homogeneous specimen under uniform deformation is almost always free from
polar effects, that is, the couple stress and the micro-curvature will not develop up to a shear
bifurcation state. Therefore we have u =0 at the incipience of bifurcation, and the bifurcation
condition (36b) is reduced to yield g =0. Thus the bifurcation criterion (46) for the micro-
polar hypoplastic continuum is simplified to

fi®36,m)—1=0 (48)

and

e =88 =Ky, 1) (K, ). (49)

5. Examination of bifurcation condition

Granular materials show strong pressure- and density-sensitive behavior. For an initially dense
specimen under monotonic loading to a stationary state, the deviatoric stress will show a peak
with the specimen experiencing dilation after an initial contraction. The denser the specimen
is packed, the higher the peak and the stronger the dilation will be. The peak will be less
pronounced at a higher pressure level. If a specimen is initially in a very loose state, no peak
state will be displayed and the specimen will experience a consistent contraction without dila-
tion. This pressure and density effect has been taken into account in the present hypoplastic
model by including the void ratio as a state variable. For monotonic loading paths, accessible
stress states are bounded by the peak stress states, which form a conical surface in the princi-
pal stress space with its apex at the origin and its axis aligned with the hydro-static pressure
axis.

With regard to criteria (30) and (46), we note that shear bifurcation depends on the stress
and density for a non-polar continuum and the stress, couple stress and density for a micro-
polar continuum (the couple stress often equals zero in a homogeneously deforming speci-
men). Shear bifurcation will occur in a homogeneously deforming specimen as the criterion
(30) or (46) is met by the varying stress and density. For the non-polar continuum model, it
has been shown that shear bifurcation occurs before the peak stress state is reached in biax-
ial compression tests [23,24]. The bifurcation point and the inclination of the shear band are
influenced by the initial density and the mean pressure. Wu and Sikora [25] and Wu [26], in
their analysis for bifurcation and failure in a density-independent non-polar hypoplastic con-
tinuum, have shown that the peak stress state may be reached before the bifurcation condition
is met for some loading paths. This means a homogeneously deforming specimen may expe-
rience either a homogeneous failure or a localized failure, depending on the loading path.

In order to investigate the possibility of bifurcation in a general way for the present con-
tinuum models, we will compare the bifurcation states with the peak stress states in the devi-
atoric stress plane, as done by Wu [26] for a density-independent hypoplastic model. For this
purpose, a mathematical representation for the peak stress state is formulated in the following.
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5.1. PEAK STRESS STATE

A peak stress state is defined by a vanishing stress rate with é > 0. Note that a peak state
differs from a stationary state in that the void ratio vanishes simultaneously with the latter.
We consider loading programs such that the directions of the principal stresses do not change
while the deviatoric stress varies. Triaxial compression and extension, as well as biaxial com-
pression and extension tests, are examples of these loading programs. In these cases, macro-
spin does not develop and the peak stress state corresponds to fi(L:é— fqIN||€]|]) =0, which
yields

é=faL ":N, (50)

where & =¢/||&| is the normalized strain rate. Since ||¢|| =1, the following condition for the
peak stresses is obtained:

D, =L N (LT N = 1/£7. (51)

Herein @, is a function of 6 (or 64 ) only. Note that this peak stress state representation is
also relevant to the micro-polar hypoplastic model if couple stress and micro-curvature rate
are zero. Given the representations for £ and N in (13), £~ and ®,(6) become

1 6®6
E‘lz—I——, 52
a2 ak@+611%) (52)

N X
<I>p(0)=&—2[n2||a||2+(2n+l)lladllz] (53)

with n=(a%—116|1)/@*+1181).

It can be seen in Equation (51) that the peak state is influenced by the density through
the factor f4. In the vicinity of the peak state, f4 <1 holds. For a loading program start-
ing from an isotropic (hydrostatic) state, numerical tests show that fy normally falls within
a range of (0-85,1-0) around the peak state. A geometric representation of the peak state
can be presented in a deviatoric stress plane by searching the radial and circumferential
directions for points at which (51) is satisfied (refer to Figure 3a). The peak stress states
in the deviatoric stress plane for some assumed values for f3 are shown in Figure 3b.
The closed loop represents an intersection of the conical peak surface with the deviatoric
stress plane. It can be seen that a decrease in the value of fy corresponds to an expan-
sion of the peak state loop. A value fy =1 corresponds to stationary states with ¢ =
0, at which (51) is reduced to [|67| = 4. Starting from the same initial relative density,
fa can be closer to 1 for the peak state at a higher mean pressure level. Therefore, the
generatrix of the peak state cone is slightly curved, rather than linear, in the meridional
plane.

5.2. BIFURCATION STATES VERSUS PEAK STRESS STATES

Now we consider whether bifurcation states will be encountered before the peak stress states
are reached. We search the stress states in the deviatoric stress plane by starting from the
hydro-static pressure axis and increasing the radius in the deviatoric stress plane, while keep-
ing the Lode angle and the mean pressure constant (refer to Figure 3a). At each point, the
bifurcation criteria (30) and (46) and the peak state condition (51) are checked.

In the numerical search algorithm, a maximization procedure is employed to obtain the
maximum value of the functions fdzcbo —1 and fdzcb’f — 1 for all possible bifurcation directions
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Figure 4. Determination of the direction for the weak discontinuity plane.

defined by the vector n={cos 1, sin { cos ¢, sin ¢ sin ¢] (refer to Figure 4). Numerical results,
presented in Figure 5, compare the bifurcation points with the peak stress points in the de-
viatoric stress plane for a constant value f3=0-85 (Figure 5a) and fq=1-0 (Figure 5b).

It can be seen that the peak stress points and the bifurcation points for the non-polar con-
tinuum and the micro-polar continuum form three closed loops in the deviatoric stress plane.
They are three-fold symmetric or periodic at the Lode angle increment A =120°. The loop of
bifurcation points for the non-polar continuum intersects with the peak stress loop, whereas
the loop of bifurcation points for the micro-polar continuum lies completely outside the peak
stress loop. It should be noted that fy is not a constant in a real loading program. In the
vicinity of the peak states, fy is increasing as a result of dilation and has a value less than

- f2e -1=0

Figure 5. Representation of peak stress points (solid curves) and bifurcation points (dashed and dash-dotted curves)
on the deviatoric stress plane.
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1-0. Since an increase in fg corresponds to a shrinking of the peak state and the bifurcation
loops, the distance between the bifurcation points and the peak point in an arbitrary direction
may be smaller. However, in the specific directions where the bifurcation point coincides with
the peak point, fq must have a unique value at this point. Therefore, the relative positions of
these loops are correctly shown in Figure 5.

Bearing in mind that only stress states inside the peak stress loop are accessible, we can
interpret these results as follows. In the non-polar continuum, shear bifurcation may occur
before the peak state is reached for stress paths with a Lode angle 6 €[0, 6p) and 6 € (61, 120°].
For stress paths with 6 € (6, 1), which includes the stress path for a triaxial compression test,
the peak state is reached before bifurcation. This indicates that a homogeneous loading will
lead to a homogeneous failure or peak failure rather than a localized failure. A similar result
was also obtained in [26] with an amorphous hypoplastic model (i.e., a hypoplastic model
with the Cauchy stress being the only state variable).

In contrast to the possible shear bifurcation in the non-polar continuum, Figure 5 shows
that no bifurcation point will be reached before the peak state in the micro-polar continuum,
even though the bifurcation states lie close to the peak states for a smaller Lode angle. This
result means that there is no solution for the discontinuity vector g within the accessible
stress domain (which is an area in the principal stress space surrounded by a cone-shaped
peak-stress surface with its apex at the origin), which indicates that only homogeneous fail-
ure or peak failure will occur in a homogeneously deforming continuum body. As no restric-
tion has been put on vector g“, the result also rules out a co-axial solution of g* with respect
to n. In other words, pure compression or tension localization is excluded too. In an earlier
analysis of localized failure with a micropolar elastoplastic model, Iordache and Willam [27]
found that the micropolar continuum description suppresses localization bifurcation in shear.
It may not suppress localization bifurcation in pure tension. This is, however, not in contra-
diction with our results, since the micropolar hypoplastic model used in this study is defined
only in a compressive sub-domain in the principal stress space, as a cohesionless granular
material can not sustain tension. While localized failure is widely observed experimentally in
biaxial compression tests [31,32], peak failures have also been observed in triaxial compres-
sion tests [33] and in true triaxial tests [34]. It should be pointed out that in the bifurcation
analysis, ideally homogeneous states are assumed in the continuum. However, in a real granu-
lar medium some packing inhomogeneity is inevitable. On the micro-scale, the void ratio var-
ies significantly from point to point even though a macroscopically homogeneous condition
is maintained. Shahinpoor [35] showed that even within a granular body composed of equal-
sized spheres, the void ratio or porosity will not be uniform. This inhomogeneity of the void
ratio can lead to a fluctuation in stress as well on the micro-scale when a granular specimen
is loaded uniformly on its boundary. Numerical results have shown that such a state fluctu-
ation is sufficient to initiate shear localization in a granular specimen undergoing a uniform
loading process [36,37]. Therefore, in the micro-polar hypoplastic description, shear localiza-
tion may occur, not in the form of sudden shear bifurcation, but rather in the form of con-
tinuous development of deformation inhomogeneity as a result of state fluctuation and strain
softening.

For the non-polar continuum, the intersection points of the bifurcation and the peak state
loops vary with respect to fq (Figure 5). This result can be explained by the density-depen-
dence of the inclination of the weak discontinuity plane. The latter, which is defined by the
angles ¢ and ¢ (refer to Figure 4), varies not only with the Lode angle 6 but also with the
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Figure 6. Inclination of the weak discontinuity plane in the non-polar hypoplastic continuum.

density factor fy. Numerical results for the non-polar continuum show that

[ 180° for 6 €[0, 60°),
$=190° for 6 e (60°, 120°]

which means that the weak discontinuity plane has its normal perpendicular to the interme-
diate principal stress direction. In other words, the weak discontinuity will occur in the plane
defined by the maximum and minimum principal stresses. The inclination of the discontinu-
ity plane is, however, influenced by the intermediate principal stress since i varies with the
variation of the Lode angle # (Figure 6). An increase in the inclination of the discontinuity
plane is obtained for a smaller value for fy3. The intersection points between the bifurcation
loop and the peak loop are marked in Figure 6. Between these marks a homogeneous failure
is predicted.

6. Conclusion

Shear localization in granular materials has been studied at the constitutive model level as a
bifurcation problem. The materials have been modelled as a non-polar continuum and as a
micro-polar continuum using a hypoplastic description. The bifurcation conditions have been
formulated in a general manner for the two incrementally nonlinear constitutive models. These
conditions indicate that shear bifurcation depends on the stress and density state in the non-
polar continuum and on the couple stress state as well in the micro-polar continuum. The
possibility of shear localization has been examined using a geometric interpretation for the
bifurcation states and the peak stress states in the principal stress space. The peak stress states
form a conical surface in the principal stress space bounding the accessible stress domain. The
stress states for bifurcation have been identified on the deviatoric stress plane and compared
with the peak stress states. The results show that, in the non-polar hypoplastic continuum,
weak discontinuity bifurcation will occur in certain loading paths, whereas in the micro-polar
hypoplastic continuum, weak discontinuity bifurcation will never occur.

In the non-polar continuum description of material behaviour, occurrence of shear locali-
zation is often attributed to the weak discontinuity bifurcation, a mathematical property asso-
ciated with the constitutive models of this type. The bifurcation analyses for the micro-polar
hypoplastic continuum in this work and for a micro-poplar elastoplastic continuum by Iord-
ache and Willam suggest that the property of weak discontinuity bifurcation may no longer
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be associated with a micro-polar constitutive model. And shear localization at the constitutive
model level may generally be suppressed in the micro-polar continuum description of material
behaviour. While shear localization has been widely observed in experiments and engineer-
ing practice, this physical phenomenon now can be interpreted as only a result of structure
response. The inhomogeneity at the micro-structure level, the inevitably existing state fluctua-
tion and the strain softening are the main causes leading to shear localization in a homoge-
neous-on-the-macro-level granular body.
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Appendix A

Let A be a partitioned square matrix in the form of

Aq Alz]
A= .
[Azl A

If A is invertible, its inverse

_ B Blz]
B:Alz[
B, B»

can be obtained by
By =(An— Ay A -Ap) 7,
B12=—A1*11 ‘A1 B,
By =—By Ay -Ap,
B =A;' =Bi-Ay-Ap

This representation shows that the invertibility of A depends on Aj; and Ay — Ay -Al_ll “App
being invertible. If A stands for IT and we neglect the terms P),, and P} for p << f;, we
have

A =P, An=P,,, Ay =P, Ap=Py,.

uu’ wu’

Referring to expression (37), Aj; and Ay, are basically invertible. In particular,

1 t, t
Al_ll:TZ I— x n®An i
a a’+ |t ||?

where t, =& -n denotes the normalized traction on plane S. Furthermore, by inserting all
components in this expression, the following representation can be obtained:

_ 1 N N
An— Ay -Afl A =ds [ail-l- (1 - ﬁ> m, ®mn},
as+ |t

where m, = i -n denotes the normalized couple traction on plane S. Obviously Ay — Ay -
Al_l1 - Ay is invertible, too.
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